79 research outputs found

    Self-adaptation and rule generation in a fuzzy system for X-ray rocking curve analysis.

    Get PDF
    X-ray rocking curve analysis is an example of a changing application domain. The salient characteristic of such a domain is that situations and facts can change over time. This means that the domain cannot be modelled by a fixed set of fuzzy rules. Instead, the rules must change over time and these changes must model actual changes that occur in the application domain. Three new techniques have been developed for altering a set of fuzzy rules: altering the credibility weight of an expert and using connection matrices to shift the focus of attention between different sets of rules; fine-tuning and changing the membership functions of fuzzy premise variables and thereby altering the meaning of the rules; and generating new fuzzy rules by inductive learning from examples. A fuzzy system for X -ray rocking curve analysis has been developed and used to test each of these techniques. This fuzzy system uses frames, logic-based variables, connection matrices and credibility weights, fuzzy rules and a record of previous decisions in order to model X-ray rocking curve analysis. Question and answer sessions with the user are used to describe experimental rocking curves and structural parameters are deduced from this description. These structural parameters are then used to simulate a theoretical curve, which is compared with the experimental one. A performance measure is derived to calculate the degree of matching between the two curves. This performance measure is used to test each of the three techniques in turn. Tests have shown that the fuzzy system optimises its performance to suit new situations and facts

    The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zel\u27dovich Array Observations of Act Sze-Selected Clusters from the Equatorial Strip

    Get PDF
    We present follow-up observations with the Sunyaev-Zel\u27dovich Array (SZA) of optically confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly discovered, massive (similar or equal to 10(15) M-circle dot), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zel\u27dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point-source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+ 0016, also known as A2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT\u27s frequency, we estimate that point sources could be contaminating the SZE decrement at the less than or similar to 20% level for some fraction of clusters

    Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation

    Get PDF
    Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its Nterminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation. These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation

    The Atacama Cosmology Telescope: Extragalactic Point Sources in the Southern Surveys at 150, 220 and 280 GHz observed between 2008-2010

    Full text link
    We present a multi-frequency, multi-epoch catalog of extragalactic sources. The catalog is based on 150, 220 and 280 GHz observations carried out in 2008, 2009 and 2010 using the Millimeter Bolometric Array Camera on the Atacama Cosmology Telescope. We also present and release 280 GHz maps from 2008 and 2010. The catalog contains 695 sources, found in a sky area of ∼600{\sim}600 square degrees. It is obtained by cross-matching sources found in 11 sub-catalogs, one for each season and frequency band. Also include are co-added data from ∼150{\sim}150 and ∼160{\sim}160 square degrees using 2 and 3 years of overlapping observations. We divide the sources into two populations, synchrotron and dusty emitters, based on their spectral behavior in the 150-220 GHz frequency range. We find 374 synchrotron sources and 321 dusty source candidates. Cross-matching with catalogs from radio to X-ray results in 264 synchrotron sources (71%) and 89 dusty sources (28%) with counterparts, suggesting that 232 dusty candidates are not in existing catalogs. We study the variability and number counts of each population. In the case of synchrotron sources, we find year-to-year variability up to 60%, with a mean value around 35%. As expected, we find no evidence of dusty source variability. Our number counts generally agree with previous measurements and models, except for dusty sources at 280 GHz where some models overestimate our results. We also characterize the spectral energy distribution of a dusty star-forming galaxy, ACT-S J065207-551605, using our data and higher frequency observations.Comment: 24 pages, 16 figures, for associated data products see https://lambda.gsfc.nasa.gov/product/act/act_prod_table.htm

    Are Better Workers Also Better Humans? On Pharmacological Cognitive Enhancement in the Workplace and Conflicting Societal Domains

    Get PDF
    The article investigates the sociocultural implications of the changing modern workplace and of pharmacological cognitive enhancement (PCE) as a potential adaptive tool from the viewpoint of social niche construction. We will attempt to elucidate some of the sociocultural and technological trends that drive and influence the characteristics of this specific niche, and especially to identify the kind of capabilities and adaptations that are being promoted, and to ascertain the capabilities and potentialities that might become diminished as a result. In this context, we will examine what PCE is, and how and why it might be desirable as a tool for adaptation within the workplace. As human beings are, or at least should be allowed to be, more than merely productive, able-bodied and able-minded workers, we will further examine how adaptation to the workplace niche could result in problems in other domains of modern societal life that require the same or other cognitive capabilities. In this context we will also focus on the concept of responsibility and how it pertains to PCE and the modern workplace niche. This will shed some light on the kind of trends related to workplace niche construction, PCE and capability promotion that we can expect in the future, and on the contexts in which this might be either beneficial or detrimental to the individual as a well-rounded human being, and to other members of society

    The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zeldovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    Get PDF
    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive ( approximately equals 10(exp 15) Solar M), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the approx < 20% level for some fraction of clusters

    The Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos

    Get PDF
    The scattering of cosmic microwave background (CMB) photons off the free-electron gas in galaxies and clusters leaves detectable imprints on high resolution CMB maps: the thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ respectively). We use combined microwave maps from the Atacama Cosmology Telescope (ACT) DR5 and Planck in combination with the CMASS and LOWZ galaxy catalogs from the Baryon Oscillation Spectroscopic Survey (BOSS DR10 and DR12), to study the gas associated with these galaxy groups. Using individual reconstructed velocities, we perform a stacking analysis and reject the no-kSZ hypothesis at 6.5σ\sigma, the highest significance to date. This directly translates into a measurement of the electron number density profile, and thus of the gas density profile. Despite the limited signal to noise, the measurement shows at high significance that the gas density profile is more extended than the dark matter density profile, for any reasonable baryon abundance (formally >90σ>90\sigma for the cosmic baryon abundance). We simultaneously measure the tSZ signal, i.e. the electron thermal pressure profile of the same CMASS objects, and reject the no-tSZ hypothesis at 10σ\sigma. We combine tSZ and kSZ measurements to estimate the electron temperature to 20% precision in several aperture bins, and find it comparable to the virial temperature. In a companion paper, we analyze these measurements to constrain the gas thermodynamics and the properties of feedback inside galaxy groups. We present the corresponding LOWZ measurements in this paper, ruling out a null kSZ (tSZ) signal at 2.9 (13.9)σ\sigma, and leave their interpretation to future work. Our stacking software ThumbStack is publicly available at https://github.com/EmmanuelSchaan/ThumbStack and directly applicable to future Simons Observatory and CMB-S4 data.Comment: Accepted in Physical Review D, Editors' Suggestio

    The Atacama Cosmology Telescope: Modeling bulk atmospheric motion

    Get PDF
    Fluctuating atmospheric emission is a dominant source of noise for ground-based millimeter-wave observations of the cosmic microwave background (CMB) temperature anisotropy at angular scales ≳ 0.5 ° . We present a model of the atmosphere as a discrete set of emissive turbulent layers that move with respect to the observer with a horizontal wind velocity. After introducing a statistic derived from the time-lag dependent correlation function for detector pairs in an array, referred to as the pair-lag, we use this model to estimate the aggregate angular motion of the atmosphere derived from time-ordered data from the Atacama Cosmology Telescope (ACT). We find that estimates derived from ACT’s CMB observations alone agree with those derived from satellite weather data that additionally include a height-dependent horizontal wind velocity and water vapor density. We also explore the dependence of the measured atmospheric noise spectrum on the relative angle between the wind velocity and the telescope scan direction. In particular, we find that varying the scan velocity changes the noise spectrum in a predictable way. Computing the pair-lag statistic opens up new avenues for understanding how atmospheric fluctuations impact measurements of the CMB anisotropy

    The Atacama Cosmology Telescope: Modeling the Gas Thermodynamics in BOSS CMASS galaxies from Kinematic and Thermal Sunyaev-Zel'dovich Measurements

    Get PDF
    The thermal and kinematic Sunyaev-Zel'dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line-of-sight. We present constraints on the gas thermodynamics of CMASS galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) using new measurements of the kSZ and tSZ signals obtained in a companion paper. Combining kSZ and tSZ measurements, we measure within our model the amplitude of energy injection ϵM⋆c2\epsilon M_\star c^2, where M⋆M_\star is the stellar mass, to be ϵ=(40±9)×10−6\epsilon=(40\pm9)\times10^{-6}, and the amplitude of the non-thermal pressure profile to be αNth<0.2\alpha_{\rm Nth}<0.2 (2σ\sigma), indicating that less than 20% of the total pressure within the virial radius is due to a non-thermal component. We estimate the effects of including baryons in the modeling of weak-lensing galaxy cross-correlation measurements using the best fit density profile from the kSZ measurement. Our estimate reduces the difference between the original theoretical model and the weak-lensing galaxy cross-correlation measurements in arXiv:1611.08606 by half, but does not fully reconcile it. Comparing the kSZ and tSZ measurements to cosmological simulations, we find that they under predict the CGM pressure and to a lesser extent the CGM density at larger radii. This suggests that the energy injected via feedback models in the simulations that we compared against does not sufficiently heat the gas at these radii. We do not find significant disagreement at smaller radii. These measurements provide novel tests of current and future simulations. This work demonstrates the power of joint, high signal-to-noise kSZ and tSZ observations, upon which future cross-correlation studies will improve.Comment: Accepted for publication in Physical Review D. Editors' Suggestion. New Fig. 1-2, Tab.
    • …
    corecore